PHYSICAL REVIEW E VOLUME 61, NUMBER 3 MARCH 2000

Nonperturbative spectrum of anomalous scaling exponents in the anisotropic sectors
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We address the scaling behavior of the covariance of the magnetic field in the three-dimensional kinematic
dynamo problem when the boundary conditions and/or the external forcing are not isotropic. The velocity field
is Gaussian, space homogeneous, antbrrelated in time, and its structure function scales with a positive
exponentt. The covariance of the magnetic field is naturally computed as a sum of contributions proportional
to the irreducible representations of the (80symmetry group. The amplitudes are nonuniversal, determined
by boundary conditions. The scaling exponents are universal, forming a discrete, strictly increasing, spectrum
indexed by the sectors of the symmetry group. When the initial mean magnetic field is zero, no dynamo effect
is found, irrespective of the anisotropy of the forcing. The rate of isotropization with decreasing scales is fully
understood from these results.

PACS numbds): 47.27—i

I. INTRODUCTION RRA

SP(R)=DR¢| (£€+2)8*P—¢ A<R<A.

The aims of this paper are twofold. First, we are interested R?
in the statistical properties of magnetic fields advected by

turbulent velocity fields. Such magnetic fields possess a

“self-stretching” term that is absent in the context of ad- 5, the other hand, the forcirfgs taken here to be Gaussian,
vected passive scalatfor a general mtroductlgn, see.Ref. space homogeneous, correlated in time, buhonisotropic
.[1])' T_hus a dynamo effect may'eX|st, and its relation ©OThe correlation function of the forcing has compact support
intermittency and anomalous scallng need; to be addressq ‘k space in an interval €k=1/L, whereL is the outer
Second, we want to focus on_the anisotropic nature of t“rbuécale of the forcing. We denoteF “(R) = (f*(R) f4(0)).
IenC(_e: gene_rlcally turbulence is forced by agents that are nel- We are interested in the properties of the covariand, of
ther isotropic nor homogeneous, but most of the fundament&&aﬂ(R t)
theories regarding universal scaling properties consider an e
ideal model of isotropic turbulence. In the case of a magnetic
field advected by a Gaussian, space homogeneous, caﬁ(R,t)E(Ba(R,t)BB(o,t», (1.9
S-correlated velocity field with nontrivial spatial scaling we
can present an exac¢honperturbative solution of the full
spectrum of anomalous scaling exponents of all the aniscand eventually in the stationary quanti®*?(R) which is
tropic contributions to the covariance of the magnetic field.obtained in the stationary state if the forcing is balanced by
We can thus offer a precise picture of the rate of isotropizadissipation. The calculation of this object in @otropic en-
tion upon diminishing scales, assess the importance of arsemble was presented by Vergassfid The anisotropic
isotropy for “inertial range” scaling, etc. problem was addressed recently by Lanotte and MaZ&ho
The equation of motion of a magnetic fiedR{r,t) reads  In the latter study, the covarian¢gq. (1.4)] was not prop-
erly expanded in terms of irreducible representation of the
3B(r,t)+u(r,t)- VB(r,t) SQO(3) symmetry group, and therefore an apparent mixing of
the different sectors was found. As a result the authors had to
=B(r,)-Vu(r,) + «V2B(r,t) +f(r,t), (1.)  tackle an infinite set of equations for all the sectors of the
symmetry group. We show below that this mixup is spurious,
whereu is the advecting velocity field, is the external forc-  originating from an improper expansion. In order to solve the
ing, andx is the magnetic diffusivity. We address a model in infinite linear system the authors were forced to assume the
which the velocity is taken Gaussian, space homogeneougxistence of a hierarchy between exponents belonging to dif-
isotropic, & correlated in time, and its correlation function is ferent sectors, and then ondy posteriorito check the cor-
rectness of their assumption. In this way the calculation ends
(U(r,Hub(r' t'))y=s(t—t")D¥(r—r’") up with one correct set of exponents, as shown below by
— 8(t—t")[D*¥(0)— S7B(1)]. using the proper expansi'on. WQ compute additional expo-
nents that were not considered in RES] because of their
(1.2 choice of forcing. We will also concern ourselves with the
issues of the dynamo effect and the attainment of a stationary
The structure functiors scales with exponert, 0<¢<2: solution for Eq.(1.4).

1.3
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The structure of this paper is as follows: in Sec. I, aftergnq one tensor respectively. Withjm(R)ERinm(IA?) in

presenting the equations of motion of the covariance, Wena notation of Ref[4], the 4-group(denoted below as sub-
expand the solutions in terms of basis functions of th€330 ¢t ) is

symmetry group. In Sec. Il the above expansion is used to

obtain the matrix representation of the linear operator which B (R)=R™1"2R*RAD(R)
determines the dynamics of the covariance. In Sec. IV we Sim me
use this matrix representation to show the absence of a dy- aB (B p—i/pa a

namo effect in the anisotropic sectors of the covariance. Sec- B7im(RI=R {(R37+RPg )im(R),

tion V is devoted to a calculation of the anomalous scaling @B (B — o] o (2.4
exponents in the anisotropic sectors, and Sec. VI offers a BTjm(RI=R™15%®im(R),

summary and a discussion. . .
Bef (RI=R7172999P®;(R).

5,jm
[l. BASIC EQUATIONS AND THE DECOMPOSITION These are all symmetric inx,3, and have a parity of
IN TERMS OF BASIS FUNCTIONS (—1)!. The 2-groups are denoted, respectively, as subsets I

The equation of motion of the covariance were derived by'i”d -
the authors of Ref.3] with the final result Bgfm(lfi)z Rfjfl[R“eﬁﬂ”RMaﬁ N

2.
HC™B=89,0,C™~[(3,99)3,C"+(3,8")9,C"] 29
+(0,0,S)CHY+ 2KV 2CB+ P Bef(RI=R I PL'R 0,0+ €R,,0P 1D m( R()é 5
E:i-g_fcgp-i- Fa,B, (21) ) |
B4l W(RI=R717 1R ®;\(R), .7
3,C*=0, (2.2 R _
BSS(R)=R 1" 1eg, 0 (R). 2.8

where the last equation follows from the solenoidal condition -
for the magnetic field. It is advantageous to decompose th
covarianceC” in terms of basis functions that block diag- fic to a,8 exchange. The remaining basis function is

0_nahze the ar_19ular part of the operelﬁbr'rhese t_3a3|3 func- Bgfm(ﬁ)ERfj(Raaﬁ_ REI*)®;m(R) , which is antisymmet-
tions are implied by the symmetries ©f Since this operator yic'tg «, 8 exchange, with parity- 1)!. This will be denoted
contains only isotropic differential operators and contrac-g sybset IV. In Ref[4] it was proven that this basis is

tions with eithers*” or R*R?, it is invariant to all rotations  complete, and indeed transforms under rotations as required
[4]. Accordingly, the natural basis functions should belong tofor 4 j m sector.

irreducible representation of the &) symmetry group, and It should be noted that not all subsets contribute for every

can be indexed by pairs of indice,m, where j  yajye ofj. Space homogeneity implies the obvious symmetry
=0,1,2 ... and—j=m=j. We are going to refer to solu- gf the covariance:

tions of Eq.(2.1) that belong to irreducible representation
with a definitej,m as the ‘§,m sector.” The operatofl C*(Rt)=CP*(—Ry). 2.9
leaves such sectors invariant. In additidnjs invariant to

the parity transformatioR— — R, and to the index permuta-

he first pair is symmetric ta, 8 exchange, and has a parity
?— 1)I*1. The second has the same parity but is antisymmet-

Therefore, representations symmetricatg8 exchange must

) i - “ also have even parity, while antisymmetric representations
tion (a,u)=(B,v). Accordingly, T can be further block di- - myst have odd parity. Accordingly, evérs are associated
agonalized into blocks with definite parity and symmetry un-y;ith subsets | and 11, and odids are associated with subset

der permutations. o . Il. We show below that subset IV cannot contribute to this
In light of these consideration, we seek solutions of theegry due to the solenoidal constraint.

form
Ill. MATRIX REPRESENTATION OF THE OPERATOR T

C“ﬁ(R,t):qum aqvjm(|R|'t)Bgﬁm(R)' 2.3 Having the angular basis functions we seek the represen-
tation of the operatof in this basis. In such a representation

whereR=R/R and Bf;'?’m(f%) are tensor functions on the unit | IS @ differential operator with [espect I&| only. In Ap-
Sphere' which be'ong’ to the Seciom of the SQ?)) symme- pendiX A we demonstrate howWw mixes basis functions

try group. The indexq enumerates different tensor functions Within a given subset, but not between the subsets — as is
belonging to the same sector. While for scalar functions orexpected in Sec. Il. In finding the matrix representatioff of
the sphere there exist only one spherical harmofjig in ~ we are aided by the incompressibility constraint. Consider
each sector, for the second rank tensor functions on thérst subset | with four basis functioi&gs.(2.4)] in a given
sphere there exist nine different tensp4$. The additional j,m sector. To simplify the notation we will denote the am-
symmetries under parity and index permutation group intglitude |R| simply asR, and redenote tha coefficients ac-
four subgroups with four tensors, two tensors, two tensorsgording to a(R)=agjn(R), b(R)=azjn(R), c(R)
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=a,jn(R), andd(R)=as;nm(R). Primes will denote differ- Using these conditions one can brifig and T, to diagonal
entiation with respect t&. forms:

In this basis the operatdr takes on the form

1
a a” a’ a ;
:I\- b . b” . b’ . b - T1:2(DR +K) 1 )
= + + .
c 1 c” 2 c’ 3 c ( ) 1
d d” d’ d
1

On the right-hand side we have matrix products. In addition, 4 1
the solenoidal condition implies the following two con- Tzzﬁ[(DRer K)+ éDR?] . (3.3
straints ona, b, ¢, andd (cf. the Appendix of Ref[4]): 1

a ., L
O=a'+2 +jb'—j?_+c'—j, T, can be written in the form
(3.2 T3;=DR{2Q(j,€)+ «R72Q(j,0) (3.4

b ¢ | o )
0=b'+ 30+t (U-Dd"=(-D(=2)5. where the four columns d®(j,&) are

2+ )+ 2)(j+3)+ 26[(j+1)(2+ )+ 8]+ E(1— &) 2j(j+1-8)E2—8)
(2+8)(2-¢) i+ E)(+1)+26(7— 8
(2+8)(2-£)(1-8) | —2eerae-s |
0 2(2+8)(2-¢)

E2-8)(2-3-8) (- 1)(2- 84—

f§2-8) —E(- 12— (- 4)
L2 H(HDTEBH | | —i(-D2-82+ e A
0 2+ 8(-2)(j-1+28)—2¢

In Appendix B we present the two remaining blocksibsets is not the case in the isotropic sector as longéasl. We
Il and 111, in the matrix representation df as a function of ~demonstrate that for these valueséofthe dynamo effect is
j. The single basiBs, (subset I\j cannot appear in the absent also in the anisotropic sectors.

theory sinceas;,=0 by the solenoidal conditiotcf. the Consider the forceless case of E.1) with F*#=0. In
Appendix of Ref.[4]): addition, assume initial conditions such tH&)=0. It is
easy to see that no mean magnetic field can appear in time.
ag’jm—jR‘la&jm=O, Accordingly our covarianceC“?(R,t) tends to zero when
R—L since C*#(R,t)—(B)2 We note that foré=0, T¢%
agjmt R 'agjn=0. (38 =2xkA5%55. In the space of function€“#(R,t), which

vanish outside the domaijiR|<L, this operator is diagonal-
izable due to its Hermiticity, with negative discrete spectrum
?— E,} due to the compactness of the domain. Thus the gen-
eral solution in this case is

Finally, there are no solutions belonging to thel sec-
tor. This is due to the fact that such solutions correspond t
subset Il. In this subset thje= 1 solenoidal condition implies
the equation

' +—3a8']m—0 3
agmt —x =0, (3.7 C“B(R,t)=; e BMCIH(R). 4.1)

or ag 1, R~ % which is not an admissible solution.

In a spherical domain the index contains the indiceg,m

and an index specifying one of the three subsets discussed
The first issue to clarify is the existence of a stationaryabove. We will assume that f@i+0 T remains diagonaliz-

solution fort—oo. A dynamo effect may cause the covari- able. We will demonstrate that the eigenvaldgs remain

ance to grow unboundedly. Vergassp® showed that this positive for 0<¢<1. This will imply that C*4(R,t) and in

IV. ABSENCE OF DYNAMO EFFECT
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particular,(B2(t))= 8,,C*#(0,t), is a monotone decreasing Using Eq.(3.1), we obtain
function of time, and hence will imply the absence of a dy-
namo effect.

To this end, we define the inner product . L R? Lt ok .
(C\,TCy)= dR—g(axbexdx)M(J)
(Cfﬁ)*cgﬁ 0 2(DR®+k)

C ,C Ef —dSR, 4.2 " '
(©.&=) . 2(DRE+ k) 42 & & A
by by b,

and demonstrate that x| T, +T, +T, , (4.9

) cy Cy Cx
_E)\(C)\,C)\):(C)\,TC)\)<O, (43) d;: d)’\ d}\

indicating thatE, >0. We first consider the ¥ 4 block with

a givenj,m. In this caseC, is gi . . . . .
given) I v IS given by where the matrixM(j) arises from the angular integration

C\(R) = aA(R)Bg,jm(ﬁ) + bx(R)B”m(IfZ) + CA(R)Bij(@) over the spherical tensoB, ;, . This matrix is obtained by a

i direcE C?IculatioAn. For example My 4(j)
+d\(R)Bsjm(R). (4.4 EdeBng(R)Bgd-m(R). The full matrix reads
|
1 2j 1 jG-1)
M) = 211 2](321j+1) 23] 2](]—1())(2]+1) 9

G- 2jG-D2j+1) 0 j(-D(2j-1)(2j+1)

We note thatM(j) is symmetric and positive definite. By ing to scale invariant solutions. We will need to match these
integration by parts, using the fact that our covariances vanzero modes to the appropriate zero modes computed in the
ish forR=L, we demonstrate in Appendix C that E4.3) is  dissipative range at the end. This will necessitate the discus-
true. sion of zero modes wheg=0, and see below.

One important conclusion of this calculation is the rela- The calculation of the scale-invariant solutions becomes
tive rate of decay of the various anisotropic contributions.rather immediate once we know the functional form of the
We see that upon increasifjgthe inner product(4.3) be-  gperatorT in the basis of the angular tensds ;. Using
comes more negative. Thus any a_n|sotr(_)p|c_|n|t|al Cpnd't'on%xpansior(ZB), and the fact thaf is block diagonalized by
res_ults Ina rap|q decay of thg highesontributions. W't.hOUt such an expansion, we obtain a set of second order coupled
anisotropic forcing the covariance of the magnetic field be’ODE’s for each block. To demonstrate this point, consider

comes isotropic in time. We will show below that in the he f di ional block of d by the f basi
(anisotropi¢ stationary state maintained by anisotropic forc-the four dimensional block o g created by t € four basis
{ensorsB j, of subset I. According to the notation of the last

ing, the covariance also isotropizes on the smaller scale ) s :
The scaling exponents governing tRedependence are also section, we denote the coefficients of these angular tensors in

strictly increasing with increasing Thus, invariably, for EG: (2.3, by the four functionsa(R), b(R), c(R), and
small enough scales and for long times one restores loc&(R).

isotropy.
C*¥(R)=a(R)Bg/i, +b(R)B$%,+c(R)BSS +d(R)BE,
V. CALCULATION OF THE SCALING EXPONENTS +.oen, (5.2

In the absence of a dynamo effect, we can consider a
stationary state of the system, maintained by the forcing ternvhere ( - -) stand for terms with othey,m and other sym-
f(r,t). The covariance in such a case will obey the followingmetries with the sam¢,m. Let us first consider the case
equation: where ¢>0. According to Eq(3.1), well within the inertial
range, these functions obey

0=TehCoP+FoF. (5.1)
a’ a’ a
Deep in the inertial range we look for scale invariant solu- b” b’ b
tions, obtained as zero modes of Ef.1). Indeed, wher¢ Tuk=0)[ , | +Tak=0)| , | +T3(x=0) =0.
>0 and well within the inertial range we can take the mag- ¢
netic dissipation to zero, and as a result, the homogeneous d” d’ d

part of Eq.(5.1) (without F*#) will be scale invariant, lead- (5.3
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Due to the scale invariance of these equations, we look for 8
scale invariant solutions in the form

a(R)=aR!, b(R)=bR!, d(R)=cR¢, d(R)=dR,
(5.4

wherea, b, ¢, andd are complex constants. Substituting Eq. e
(5.4) into Eq. (5.3 results in a set of four linear homoge- Pl
neous equations for the unknowasb, c, andd:

=0.

[{({—D)Ti(k=0)+{To(k=0)+T3(k=0)]

0 0.2 0.4 0.6 0.8 1

§

. ) o ] FIG. 1. The leading exponents of the symmetric parts of the
The last equation admits nontrivial solutions only when zero modes of the magnetic covariance.

o o T o
T

(5.5

def({—1)T(k=0)+{To(k=0)+T3(xk=0)]=0. with negative exponents in Ed@5.7), for they will give a

(5.6 nonphysical divergence aR—0. Assuming now that the
solutions(including the exponentsare continuous ir¥ (and
not necessarily analyticwe find that also for finite only
the positive exponents appear in the inertial rataeexcep-
tion to that is theg =0, to be discussed belgwFinally there
exist two branches of solutions corresponding to the and
(+) in the square root:

This solvability condition allows us to expregsas a func-
tion of j and ¢. Using MATHEMATICA we find eight possible
values ofZ, out of which only four are in agreement with the
solenoidal condition:

1 31
() V+04/ i , 3 1 1
£ 2§ 2_2\/H(§’”_2 K(&D), gfg=—§—5§+5\/H(5,j)i2\/|<(g,j), subset I.
K(&])=¢"-28+ 283+ 2832 - 48] - 32— 4872 5.9
—8&j2—8¢j+4E+16)+16j%+ 4, (5.7

These exponents are in agreement with R&<]. Note that
H(&,j)=—2—8E+2&j2+2&j +4j%+4j+5. for j=0, only {9 exists since the other exponent is not
admissible, being negative f@— 0, and therefore excluded
. . by continuity. However,Z{? becomes negative ag in-
Not all of these solutions are physically acceptable, becausgreasedsee Fig. 1 Forj=2 both solutions are admissible,
not all of them can be matched to the zero-mode solutions ignq the leading one i which is smaller.
the dissipative regime. To see why this is so, consider the | et ys find the behavior of the zero modes in the dissipa-
zero-mode equation faf=0: tive regime for&>0. Here the dissipation terms become

(2k+2D)V2C=0. (5.  dominant and we can neglect all other termdirThe zero-
mode equation in this regime becomesVZC**=0, which

The main difference between the=0 case and th&>0 is again, up to an overall factor, identical to the zero-mode
case is that in the former the same scale invariant equatioaquation withk=0 and£=0. The solutions in this region
holdsbothfor the inertial range and the dissipative range. Asare once again scale invariant with scaling exponents
a result, foré=0, the zero modes scale with the same expo{fQ|§:0=j ,J—2. As expected, the correlation function
nents in the two regimes. These exponents are given simplg “#(R) becomes smooth in the dissipative regime.
by Eqg. (5.7) with ¢=0, because foE=0 the zero-mode In addition to subset I, one needs to compute the expo-
equation withk=0 is the same as E¢5.8) up to the overall nents corresponding to subsets Il and Ill. The computation in
factor D/(D + «) which does not change the exponent. Forthe other two blocks follows the same lines. Since these are
&=0 our solutions should be valid for the dissipative regime2x 2 they furnish two solutions for the exponents, one of
as well as for the inertial regime, ruling out the two solutionswhich is negative. We end up finding

) 3 1 1
)= 5S¢+ 5 1106+ @274 2]€+ 4] +4%  subset ] (5.10

L3 1 1
gﬂl):—E—§§+E\/§2+2§+1+4j2+2j2§+4j+2§j, subset III. (5.1)
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i l 18 - ' TABLE I. The leading exponents in the various sectors.
.................................... =
s — =6 Symmetric Antisymmetric
------------------------------------------------------------ j=0 Gia B
4r =4 Evenj>0 4o f
--------------------------------------------------------------------------------------------- Oddj>1 g _
O j )

for the magnetic covariance foliate into independent closed
» . . . . equations for each set of irreducible representations of the

0 0.2 0.4 0.6 0.8 1 SQ(3) group.
1S In summary, we have shown that the covariance of the
magnetic field is naturally computed as a sum of contribu-
FIG. 2. The leading exponents of the antisymmetric parts of thajons proportional to the irreducible representations of the
zero modes of the magnetic covariance. SQ3) symmetry group. The amplitudes are nonuniversal,
determined by boundary conditions. The scaling exponents
are universal, forming a discrete, strictly increasing spectrum
indexed by the sectors of the symmetry group. Similar re-
ults were presented for passive scalar fluctuations in Ref.

For j=0 there is no contribution from this subset, as the
exponent is negative. The dependence of the admissible le 5], and for Navier-Stokes fluctuations in Refd.8—1d. In

Ing exponents o Is displayed in Figs. 1 and 2. In Table | the present case anomalous scaling laws are found as the
we summarize which are the leading exponents in each sec- o . .
tor. Zero modes of the inertial operator governing the stationary

After matching the zero modes to the dissipative rangeequat'on for the mag’??“c covarianpé ). M?“Ch'”g with
one has to guarantee matching at the outer dcalthe con- the U_V boundary conditions _selects the physu_:ally acceptable
dition to be fulfilled is that the sum of the zero-modes with SOlUtions. It now appears quite clear that the issue of anoma-
the inhomogeneous solutiorsshose exponents are g-  10US, universal scaling exponents in turbulence has ramifica-
must giveC(R)—0 as|R|—L. Obviously this means that tions on the multitude of sectors of the appropriate symmetry
the forcing must have a projection on any sedsqp;,, for ~ 9roups.
which ag ;, is nonzero.
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conclusions that the scaling exponents are strictly increasing

with the index ofj of the sector, meaning that there is a

tendency toward isotropization upon decreasing the scales of APPENDIX A: DEMONSTRATION OF THE ACTION
observation. We also showed that as far as the dynamo prob- OF ?35

lem is concerned, anisotropic sectors are less unstable than
the isotropic sector: in the absence of an external forcing As an example of the operation Bfon the basis function
anisotropies decay in time faster then isotropic fluctuations. . - ion GR2C A h '

In distinction with the expansion presented in Reéf|, our consider an explicit calculation af"C*~. Suf: a term ap-
results are free of any assumptions about the hierarchy d¥ears as a part &"99" which is a part ofT, and also in
scaling exponents belonging to different @Dsectors. This the magnetic dissipation term. Considering explicitly the part
is due to the employment of a proper basis set. The equatiorﬁ'jm(R,t)Bgfm(F}):
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9*agjmR™ 1T 2R*RED = 9" ,a9;mR™ 1 T2RRPD;
=0*agjR 173~ (j+2)agjmR™ IR, RRED 1, + 9agjmR ™ 2RAD

+dPagimR™1T2RD i+ 9#ag; R T2RRPG D,

ag; . ag) Qg
= |8~ (1+3) 5"~ (1 +2) g+ (+2)(+4) T BS,
/ a/
+(j+5)] 20— (j2) 20 9”“ B3, +2| —a™ — (j+2) —2" 9”“ Bgf, +2—0n ;’mBi’fm
9im L ap ’ 9]m QJm
+ 2 B7,jm J R (J+2) 91m R B7Jm
a, QJm 9]m
=|agmt2 g —(j+2)(j+3)— ngm+2—B7Jm+2 5B (A1)

In performing the computation, we make use of the following basic identities that are employed repeatedly in all our
calculations:

9#9,®,n=0, (A2)

The first identity follows from&Zij= —j(+ 1)R‘2ij. The second from the fact thdt;,, are homogeneous polynomials
of degreg. As expected, the result remains if,a sector, and mixes only basis functions with the same symmetry properties.

APPENDIX B: T AND THE SOLENOIDAL CONDITION IN THE TWO REMAINING SUBSETS

In this appendix we present the two blocks pertaining to thd Y ** parity. The part denoted in E¢3.1) asT; andT,
remain unchanged except that the identity matrix is now two dimensional. For the case of invariance,nifeerchange
(subset I} we find the 2x2 matrix Q(j,£):

—(J+D(2+§)(j+2-8)+28(T7-§) —&(j-D*2-9) (B1)
(2=8)(2+¢) JG-D(2+§+&(j-3)(2+ &) +2¢)
The solenoidal condition reads in this cdsé the Appendix of Ref[4]):
aé,jm_" 3R71a8,jm+ (J - 1)a(,3,jm_ (J - 1)2R71a6,jm: 0. (BZ)

From this equation we learn that a contribution pertaining=td. cannot appear in this theory, since for this valug a)gjm
must have a negative scaling exponent which is not admissible.
For the case of antisymmetry underB interchanggsubset 1) we find the 2<2 matrix Q(j,£):

§(4+28+4))-(j+D(j+2)(2+8) §(-D(2-9

. : (B3)
4-2¢ —(J=D[j(2+§) +4¢]
|
with the solenoidal conditioficf. Appendix of[4]) components of-m since the covariance is real. We treat
_ separately the contributions associated wWith T,, andT;.
R™ayjm—asm+(j— 1R 'ayjm=0. (B4)  showing that they are all negative definite.
APPENDIX C: PROOF OF EQ. (4.3 1. Integrals of T, and T,
To demonstrate Eq4.3 we noteT as well asvi(j) arem For the evaluation of these integrals it is convenient to

independent. We can therefore considerrtive0 case with-  work in the basis that diagonalizéd(j). SinceM(j) is a
out loss of generality. In this case the basis functions as welleal and symmetric matrix, it is diagonalizable, and as it is
as the coefficients, b, ¢, andd are real. For nonzerm the  nonnegative its eigenvalugs, i=1, 2, 3, and 4, are non-
imaginary components have to cancel with the imaginaryhegative.T, andT, are proportional to the unit matrix, and
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therefore they remain so in any basis, and in particular in the a
diagonal basis ofl. In that basisa, b, ¢, andd are replaced . b
by a,, a,, as, anda,, and the contributions of;, andT, is EKJ’ dx 1 (@ b c dx(j,0
o Dxf+k e
S, [Fox :
i dx a,
R R (C7)
£ ” £ ai, gai,
X| 2(Dx*+ k)i +4(Dx*+ k) S -+4Dx . (CD) whereX(j,£) is the symmetric matrix
This integral is negative definite for all valuesipkince it is
the sum of two negative definite integralsandl ,: M()Q(j, &)+ M()Q(j,E)T
X(j,é)= : (C9
L X2 ¢ " £ ai 2
1= jo dXDx§+Kai 2(Dx*+ k)a;] +4(Dx +K)7
. ) Forj=2 andé=0, X(j,¢) is given by
=2f dx(xa))—= (Xg
. (X&) dxz( i)
) -20 -32 -12 0
L | d
=—2f dx &(xai) <0, (C2 —-32 176 —-48 0
0 =
X(2.0 -12 -—-48 -36 O]’ €9
X2 a 0 0 0 O
l,=4D dx axé—
Dx¢+ k X
L xé+l with the eigenvalues (12.97...,-196.8...,
= _4Df0 dxgx Dt x| 2. (C3) —21.9...,0), so theexpression is obviously nonpositive.
For higherj’s, we can look at the determinant ¥{j,0):
Accordingly,
Lod| xf? detX(j,0=(j+3)(i+2)*(i+ D *( - 1) —2);
|2——2Df dxd—x Dt a; (C10
L Dx*+k(1+é&)xé _ . . . .
=_ ZDJ dx > ai2<o_ (C4) this function is positive for every>2, which means that we
0 (Dx¢+ k) have 4 negative eigenvalues whgn?2.

2. Integral of T3

(2) The part involvingD is

The contribution ofT; has two parts: One which is pro-
portional tox, and one which is proportional . We shall
analyze each of them separately and show Ithgt) - T is a

nonpositive matrix for every=2 and every 6=¢<2.

(1) The part involvingx is

L X2 b L
l3=deDX§+K(a ¢ M(j)xx *Q(j,0)

0

L
= dx a b c¢ —
Kfo DX§+K( d)

XIM()Q(j,0+ M(})Q(j,0)]

o o T 9

—~Q O T 9

|

(C6)

o

a
L b
= £-2

o ax- X§+K(a b ¢ dM()X Q8|
d

L
—DfodeX+K(a b ¢ d)x(j.6 (c13)

o O T

The proof of the nonpositivity of this expression follows the
same lines of the previous discussion. We know thaté&or
=0 andj =2 X(j,¢) has three negative eigenvalues and one
zero. Therefore, It is sufficient to show that &&€f,¢) is
positive for every 8<¢<<2 andj=2 to ensure thaX(j,¢) is
indeed nonpositive. This is indeed the case, as can be veri-
fied explicitly uUSIngMATHEMATICA .
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